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The formation of ripples and dunes on an erodible bed 
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A two-dimensional stability analysis is presented of flow of low Froude number over 
an  erodible bed. Particular regard is given to  the modelling of the turbulent flow close 
to  the bed. I n  contrast t o  previous theories that  use a constant eddy-viscosity approach 
the present theory predicts the occurrence of two separate modes of instability, with 
wavelengths related t o  the roughness of the bed and the depth of the Row. It is postu- 
lated that these two modes correspond to the formation of ripples and dunes respec- 
tively. The results are strongly dependent on the two parameters z,,, the roughness 
length of the bed, and p, the effect of the local bed slope on the bed-load transport. 
Using physically plausible estimates for these parameters the results of the analysis 
are in good agreement with observations for both ripples and dunes. 

1. Introduction 
A striking feature of transverse bed forms on an erodible bed, particularly for low- 

Froude-number flows, is the occurrence of two separate modes of growth of a bed 
wave. There is a distinct difference in the dimensions of the two forms (see, for example, 
Allen 1970). As a definition we shall classify those bed forms whose dimensions are 
dependent on the flow depth as dunes and those dependent solely on the local bed 
properties as ripples. I n  the sea and in some deeper rivers a further transverse bed 
form frequently occurs, commonly named mega-ripples. These features are similar 
in shape to  the small-scale ripples but have larger dimensions, typically of wavelength 
1-10 m. 

Theories for the formation of the two types of bed form have often been treated 
separately. For a comprehensive review the reader is referred to  the recent paper by 
Reynolds (1976). Kennedy (1963) treats the problem of the formation of dunes as a 
two-dimensional stability analysis. Using the potential flow solution for the flow over 
the perturbed bed, he relates the sediment transport to the local fluid velocity. To 
produce unstable waves he introduces a quantity, 6, which he defines as the distance 
by which the local sediment transport lags behind the local velocity a t  the bed. Exner 
( 1  925) had shown earlier, using a hydraulic model, that  with the inclusion of friction 
there is a phase lag between the bed form and the fluid velocity, and thus sediment 
transport. By including friction in the flow and using specific representations for the 
bed load and suspended load, Engelund ( 1  970) was able to predict the lag distance and 
obtain lower and upper bed-form regimes. Smith (1970) used the same approach but 
restricted the flow to a low Froude number. Fredsnre (1974) extended the work of 
Engelund by introducing the effect of the local bed slope on the bed-load rate. At low 
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Froude numbers this was found to restrict the unstable waves to low wavenumbers 
and Fredsrae obtained good agreement between his theory and experimental results. 

The formation of ripples is not so well understood and there is no general consensus 
of opinion. The various theories can be broadly divided into stability theories and 
theories involving the propagation of ripples downstream from an initial disturbance. 
Bagnold (1956) considers the stability of the bed. He defines a critical value of the 
Shields number above which all the surface grains are in a saltating motion. At 
slightly lower values of the Shields number he argues that the plane bed is unable to 
resist the applied shear stress. Primary ripples are then formed to create form drag 
and thus reduce the skin friction. For increasing flow conditions these primary 
ripples become unstable and form secondary ripples with a larger form drag. Liu 
( 1  957) proposes that the sediment bed acts as a viscous fluid and that ripples are a form 
of a Kelvin-Helmholtz type instability of two sheared fluids of different density. In  
contrast Raudkivi (1966) attributes ripples to a propagation downstream of an initial 
chance piling up of the sediment. Williams & Kemp (1971) purpose that these small 
deformations are caused by the random action of high turbulent velocities, or ‘bursts ) )  

close to the bed. The deformation then causes the flow to separate with subsequent 
building up of the disturbance into a ripple. Ripple propagation proceeds by an 
erosion and deposition procese downstream of the initial ripple. 

The present p a p  presents a single linear stability theory of a plane erodible bed 
to account for the occurrence of both ripples and dunes. Only the bed-load transport 
of sediment is considered, restricting the analysis to flows with low shear rates. The 
theory is an extension of that of Engelund ( 1  970) to include a more realistic description 
of the turbulent flow close to the bed. In particular the turbulent length scale of the 
flow is here assumed to increase linearly with height above the bed. The result is that 
two separate instability modes are found, one dependent on the local roughness of the 
bed and the other dependent on the depth of flow. The theory can also account for the 
formation of the large mega-ripples. 

In  $ 2  the linearized equations for a turbulent open channel flow over a small- 
amplitude bed wave are formnlated. By relating the bed-load transport of sediment to 
the surface shear stress predicted by the model, the stability of the bed wave is 
examined in $3.  The results of the analysis are presented in $ 4. These are compared 
with observations in 5 5 and a discussion of the results is presented in 6 6. 

2. Open channel flow over a small-amplitude bed wave 
To determine the stability of an erodible bed we require the flow over a small 

perturbation to the bed and to relate this to the transport of sediment, and thus the 
evolution of the perturbed bed. The bed displacement is given by 

h = h, exp i (kx - d) (2.1) 

where k is the wavenumber of the bed and u its growth rate. We assume that the flow 
responds relatively rapidly to the slow development of the bottom wave, and therefore 
that the time dependence of the flow can be neglected. The validity of this assumption 
is tested in $ 6 .  The only interaction between the flow and the moving sediment will be 
through the possible modification of the roughness of the bed (see 95). In  the tidal 
situation we shall assume that the flow can be assumed steady and the total effect of 
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FIGURE 1. Definition sketch of flow region. 

the tide found by integrating over the tidal cycle. This assumes that the development 
time of the flow is short compared with the tidal period, but i t  should also be noted that 
the majority of the sediment transported will take place when the stressisgreatest, i.e. 
when the tidal f l ~ w  is fully developed. 

We consider ?%steady flow of depth D over a small periodic two-dimensional per- 
turbation to  the bed h = h, exp ( i k x )  driven either by an externally applied horizontal 
pressure gradient or by tilting the region through a small angle a: (figure 1). The x 
and z co-ordinates are taken along and normal to  the mean bed level respectively. The 
equations of motion for the mean velocity are then 

au au ap a a 
ax az ax ax 
aw aw ap a a 
ax az az ax 22 az ~ $ 7  

u-+ W -  = --+-77,,+-77,+g az sina:, 

u-+ w-= - - + - 7  +-7  

and the continuity equation 
au aw 
ax az 
-+- = 0. 

(2.2) 

(2.3) 

Here U ,  W are the components of the mean velocity in the x, z directions respectively, 
p is pressure, rX2, etc. are the Reynolds stresses and g the acceleration due to gravity. 

We shall linearize the equations with respect to the wave slope h,k. Taylor, Richards 
& Nunes (1978) compare the results of the present linear theory with those of a 
numerical model which retains the nonlinear inertial terms and use the same turbulence 
closure. As an estimate of the effects of the linearization of the equations they find 
that the predictions of the two models of the perturbed surface shear stress and pressure 
differ by approximately 10 yo for h,k = 0.05 with the linear model overestimating the 
flow perturbations due to  the wave a t  this amplitude. 

I n  linearizing the problem a difficulty arises at the bottom boundary because of the 
logarithmic nature of the velocity profile of a turbulent flow near the bed. Engelund 
(1  970) by introducing a slip velocity is able to use a Taylor expansion around z = 0 
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to obtain a boundary condition at  z = 0. This is invalid in our case, however, because 
of the singularity of the velocity profile U - In z a t  z = 0. This difficulty was noted by 
Miles (1957) and Benjamin (1959). Townsend (1972) assumes a logarithmic velocity 
profile near the surface and applies the bottom boundary condition above the wave. 
However, as noted by Taylor et al. (1978) his expansion of In [ ( z - h ) / z ]  requires 
z h,, restricting the results to very small values of the wave slope, h,k < 0.01. 

To overcome these difficulties we shall use a transformation of the co-ordinate 
system from (x, z )  to (x*, z * )  similar to that used by Taylor (1977). 

The new co-ordinate system is defined by 

x* = x, z* = z-h,exp(ikx)F(z*). (2.4) 

We choose F so that the lines z* = constant are approximately streamlines and for 
the lines z* = 0 and z* = D to correspond to the lower and unperturbed upper bound- 
aries. The potential flow solution suggests the use of 

sinh k(D - z*) 
F(z*) = 

sinh kD * 

Note that, on z* = 0, F = 1 so that z = h, exp ikx and, on z* = D, z = D. 
In  the non-orthogonal (x*,x*) co-ordinate system, retaining U and W as the 

downstream and normal Cartesian velocity components, equations (2.2) and (2.3) 
become 

and 

where to first order in wave slope 

- 1 - k, F'eikz', 
aZ* -- 
az 

and the prime denotes differentiation with respect to z*. 
To close the above system of equations we need to express the Reynolds stresses in 

terms of mean-flow quantities. We shall use an eddy-viscosity approach based on. an 
additional equation for the turbulent kinetic energy (see Rodi 1978). For a small 
perturbation to the bed the exact specification of the turbulent stresses should be 
unimportant provided the flow close to the bed is correctly modelled. We have chosen 
the present closure scheme in preference to a mixing-length hypothesis, to avoid the 
difficulties of the free surface where the stress is zero, and to that of Bradshaw, 
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Ferris & Atwell (1967) because of the need to specify zero turbulent energy a t  the free 
surface. However, similar results to those presented are expected with either of these 
alternative schemes. The fundamental difference between this and previous bed- 
stability theories (e.g. Fredsrae 1974; Smith 1970) is that the turbulence length scale of 
the flow close to the bed is assumed to increase linearly with height. 

Following Taylor (1 977) we assume that 

and QE+Tvv = 0, 
- - -  

where K is an eddy viscosity and E = +(ut2 + v f 2  + w ' ~ )  the turbulent kinetic energy 
with uJ2 = - T,,, etc. the components of the turbulence intensity. 
- 

The eddy viscosity is expressed as 

K = Z(hE)*, 

where 1 is a mixing length which is taken as a prescribed - function of position and h 
is a constant equal to the equilibrium value of - u'w'/E in the constant stress layer 
and given the value 0-25. 

The turbulent energy, E ,  is determined by the transport equation (in x*,z* co- 
ordinates) 

The additional closure assumptions we shall make are 

aE 
U'P' +u'E' = - KE- 

ax 
- -  

and 

where K ,  is assumed equal to K.  
The dissipation of turbulent kinetic energy, E ,  is represented by 

e = (AE)%/E,,  

where the dissipation length scale 1, is taken to equal 1. 
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FIGURE 2. Unperturbed profiles of mean velocity, U,, turbulent energy Eo 

and eddy viscosity K O ;  D/zo = 1600. 

The mixing length I is taken as 

I = Zo(z*) + G(z*) hoeik*, 

where Z0(z*) = K ( Z * f Z O )  ( 1 --- :x)”. , 
zo the roughness length of the bed and K is von KBrmBn’s constant, taken to be 0.4. The 
term 

is included so that, to first order in h, k, the mixing length is dependent on the normal 
distance from the bed near the lower boundary and dependent on z* well away from 
the lower boundary. This form of mixing length gives 2, N K(Z*  + zo) close to the surface 
and 1; = 0 at z* = D with the eddy viscosity approximately constant in the upper 
half of the flow. Alternative forms of the mixing length have been tried (see Richards 
1978)) producing little change in the predicted surface shear stress and giving similar 
results for the stability analysis. 

The undisturbed profiles of velocity Uo(z) and turbulent energy Eo(z) can be obtained 
from the reduction of the equations for flow over a plane bed, i.e. 

G(z*) = (P- 1) Z ~ ( Z * )  

and 
d U  To _ -  - - 
dz K ’  
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where 7, is the unperturbed horizontal shear stress given by 
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~ ~ ( 2 )  = u$( 1 - z/D) 

and u i  = gDsina, the friction velocity. The boundary conditions taken are U, = 0 
on z = 0 and dEo/dz = 0 on z = 0 and z = D to allow no diffusion of turbulent energy 
through the boundaries. Profiles of Uo(z), E,lz) and K,(z) for D/z, = 1600 obtained by 
numerical integration are shown in figure 2. As z -+ 0, U, - (u,/K) In [ ( z  + z,)/z,] and 

The perturbed velocity components (u, w )  and turbulent energy are assumed to have 
the same period as the bed wave, e.g. u = u ( z )  exp ikx. Following Benjamin (1959) we 
shall incorporate part of the effect of the surface undulations into the basic U and W 
profiles and take 

U = U+ u ( z * )  exp ikx*, 

W =w +w(z*)expikx*, 

where a = U,(z*) az*/az, W = - U , ( z*)  az*/ax and a and w satisfy the continuity 
equation (2 .8)  to first order in h,k. The turbulent energy is written as 

E = E ,  + &(z*)  exp ikx*. 

Then, with the above turbulent closure hypotheses, and linearizing equations ( 2 . 6 ) -  
(2.9), we have the following, after a certain amount of manipulation. The U momentum 
equation: 

E ,  - u$/A.  

- 

- iUg kh,F’ + U,iku + wUh = - ikpm + K A + E ~  lu”+ u’ 1’ + [ ( 2E0dz* 

-k21U+ikw 

 hi& fi, (2.10) 
where 

f i  = [ l(ikh, F’ - h, F ” )  - (k2hoF + h, F ” )  1’ + “s)] U, ( 2E,dz* 

1(k2h0F-3h,F“)-3h,F’ +h,G’+h,G-- 2E0dz* Uh dEO1 
+ [ - 31h,F’ + hoG] Ui. 

The W momentum equation: 

- Uik2hoF+ikUow = -- 
dz* 

-2 iku  ( l’+Ls) 2E,dz* +Kh*E$f2, ( 2 . 1 1 )  

where 

f 2  = [ - lk3h0 F + ilkh, F” + Zikh, F’ 1‘ + ( 2E, dz* 

2ikh,lF’+ikh,F 



Primes denote differentiation which respect to z*. Length and velocity scales have 
been non-dimensionalized with D and u* respectively and pm = p + QE,. The real and 
imaginary parts of the linearized perturbed horizontal shear stress are 

The transformation of the equations to (x*, z*) co-ordinates, although considerably 
complicating the equations, allows a simple specification of the lower boundary con- 
ditions. Namely, on z* = 0, the no-slip condition gives 

and aE/an = 0, where n is an outward normal to the surface, allowing no diffusion of 
turbulent energy through the boundary, linearizes to  

and aE/an = 0, where n is an outward normal to the surface, allowing no diffusion of 
turbulent energy through the boundary, linearizes to  

the free surface perturbation, 

gives the condition 

gives the condition 
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With the hydrostatic approximation this gives 

U 
w = i k F r 2 *  

U P  
(2.16) 

where Fr2 = U,2/gD, the Froude number. 

linearization this gives the condition 
The dynamic condition is that  the tangential shear stress should vanish. After 

-qoI’+~1(u’+ikW) = 0, 

which gives 

I’ u2 
u’ = - ikw +- - Fr2A2pm on z* = D. 

K I  u, (2.17) 

We will also take aE/an = 0 on z* = D + q, which linearizes to 

d&/dz* = 0 on z* = D. (2.18) 

With this  set of boundary conditions, (2.14)-(2.18)) equations (2.10)-(2.13) can 
be solved numerically using a shooting method (see, for example, Keller 1968). 
The equations are integrated from one boundary with trial values of the unknown 
variables a t  that  boundary. A linear combination of solutions to the homogeneous 
equations is then added to  the particular solution of the full equations so that the 
composite solution satisfies the boundary conditions a t  the other boundary. This 
procedure can be applied in either direction. We choose to  integrate from the lower to 
the upper boundary. 

For the shorter-length waves considered the depth of flow becomes unimportant. 
We can therefore consider those waves in a deep turbulent boundary with an un- 
disturbed constant shear stress profile with corresponding logarithmic velocity and 
linear mixing-length profiles. For a wave with kD = 4.0 the predictions by the open 
channel and constant shear stress models for the surface stress, etc. differed by 
less than 1 yo. The results presented for kD > 4 in section 4 were obtained with the 
constant stress model and assuming an infinite depth to  the flow. 

3. Sediment transport 
For low shear rates the dominating mode of transport for sand particles is as bed 

load and in our.study we will neglect any suspended load. Essentially most bed-load 
formulae can be written in the form 

q h  = C(70)m (3.1) 

where qb is the bed-load rate (the mass discharge of sediment) and C a constant 
dependent on the flow and sediment characteristics. The value of m is taken as Q in 
the formulae of Meyer-Peter & Miiller (1948) and Bagnold (1956), thus relating the 
bed-load rate to  the fluid power. 

Relating the variation with x of qb to  the bed wave height we have the sediment con- 
tinuity equation, due t o  Exner (1925), 
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where n is the porosity of the bed. For the wave (2.1) and using equation (3.1) we have, 
to first order, 

where 7 8  is the perturbed tangential bed shear stress (which linearizes to 

7’= 7,.(2* = 0) + i7i(Z* = 0)). 

The bed is unstable when gi > 0. This requires 79 > 0, i.e. the maximum in the 
shear stress and thus sediment transport rate to be upstream of the crest. In  physical 
terms, if the sediment transport rate is decreasing over the crest then deposition will 
take place, while erosion will occur if it is increasing. 

We shall see later that in order to obtain a maximum in the growth rate of bed waves 
we need to restrict the growth of waves to a finite wavenumber. As shown experiment- 
ally by Lysne ( 1  969) gravity has a significant contribution to the force on the sediment 
when the bed is sloping. This will have a stabilizing effect on the bed wave because the 
effects of gravity will reduce the transport rate of sediment towards the crest from 
upstream and increases it away from the crest, downstream. Fredsrae (1974) introduces 
this effect by relating the additional force due to gravity to the bed slope. We shall 
follow Fredsrae and take the perturbed bed load to be proportional to -/3ah/az), 
where /3 is taken to be constant. Then equation (3.3) becomes 

where A is a constant dependent on tho unperturbed shear stress and the nature of the 
sediment. 

We can provide estimates for A and p by applying a specific transport formula. 
Bagnold (1 956) relates the rate of work done in pushing the bed load along the bed 
against frictional resistance to the power in the flow available to move the sediment. 
For a bed of inclination a to the horizontal this gives 

8.5 7 t h  - 7cr) 
q b  = - eb 

yg (tan $ +tan a)  cos a’ (3.5) 

where eb is an e%ciency factor of order 0.1, $ the angle of frictional resistance, 7cr the 
critical shear stress for sediment movement and y = (p, -p ) /p  withp, andp the density 
of the sediment and fluid respectively. 

Linearizing equation (3.5) with respect to wave slope gives equation (3.4) with 

and /3 = l/tan$. J 
In an earlier paper Bagnold (1 954) describes experiments on the shearing of sand 

grains. He distinguishes two limiting cases, where the stresses between grains are 
transmitted by the fluid viscosity and where this is done wholly by particle-particle 
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interactions. From his experimental results he obtains the following limits for the 
angle of frictional resistance, 4, 

(3.7) 0.75 > t an4  > 0-32, 

with tan 4 decreasing for increasing shear stress and grain size. 
This gives values of ,8 between 

1.3 < < 3.1. (3.8) 

4. Results 
We shall consider the limiting case of zero Froude number, i.e. assume the free 

surface to be plane. The results for non-zero Froude number, discussed later in this 
section, show that the results of the analysis are approximately unchanged for 
Pr < 0.25 (figure lo), a condition which is adequately satisfied by most large rivers 
and the sea. 

The flow over the bed wave, in terms of the wave slope h, k ,  ie dependent on the two 
non-dimensional parameters kD and D/z,. Profiles of the real and imaginary parts 
of the perturbed shear stress, turbulent energy and pressure plotted against 

6 = In [ (z  + z,)/z,l 

are shown in figures 3 and 4 for a typical case with kD = 1 and D/z ,  = 1600. Taking, 
say, zo = 0.5 cm, this corresponds to a wave of wavelength 50 m and a flow depth of 
8 m. At the bed the stress maximum is upstream of the crest, with a phase lag of 
0, = 30.2". There is also an additional elevated extremum approximately 180" out 
of phase with the bed and height 0 . 2 5 0  above the bed. The pressure remains approx- 
imately constant with depth and 175" out of phase with the bed. 

The results of the present model can be compared with those of Townsend (1972) 
for flow over water waves by taking a constant unperturbed stress profile and letting 
the depth of flow tend to infinity. The only results he presents for a fixed wave are 
with R = -In (kz,)  = 8. He obtains bed stress values of 7:/h,k = 4.28, 7t/h,k = 1-69, 
which gives a phase lag of 8, = 21.5'. This compareswith ~ : / h , k  = 4.21, r;/h,k = 2.34 
and 8, = 29.1" for our model. This discrepancy may be due to Townsend's treatment 
of the lower boundary but is also due to the different turbulence closures of the two 
models. 

We are interested in the stability of the bed and thus in the value of the imaginary 
part of the bed shear stress (equation (3.4)). In  figure 5,  Ti/h,kpu2, is plotted against 
kz,, for D/z ,  = lo4 and lo5. We note that there are two maxima in each curve, at  
kz,  = 5-8 x 10-6 (kD = 0-058) andkz, = 7.0 x 10-3forD/zo = 104andat kz, = 4.4 x lo-' 
(kD = 0.044) and kz,  = 7.0 x for D/z ,  = lo5. We shall treat the two maxima 
separately. 

(a )  Ripple mode 

The second of the two maxima in 7$/ph0ku2, is independent of the flow depth and we 
shall use the results of the model with an unperturbed constant stress layer and in- 
finite depth. The flow is then only dependent on k,. From equation (3.4) the growth 
rate of the bed wave is proportional to w, = [ ( ~ Z , ) ~ / U : ]  (T,/h,k-/?). The results for 
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FIGURE 3. Vertical profiles of the real parts of the perturbed stress, 7r, turbulent energy, gr, and 
pressure, p,; kD = 1.0, D/zo = 1600. 

FIGURE 4. Vertical profiles of the imaginary parts of the perturbed stress, 7*, turbulent energy, 
gi, and pressure, p,; JED = 1.0, D/zo = 1600. 

varying p are shown in figure 6. For p > 2.9 the bed is always stable as ri /hOk-/3 is 
negative. We note that for /3 = 0 the growth rate increases monotonically with kz,. 
However, for ;t non-zero value of /3 c 2.9 the growth rate attains a maximum positive 
value for a finite value of kz,, giving a preferred wavelength a t  which we would expect 
a disturbance to grow. Table 1 gives the wavenumber for which the growth rate is a 
maximum together with the maximum growth rate for /3 varying between 1.4 and 
2.9. This gives the range 

0-007 < k ~ ,  < 0.16 (4.1) 

with kz, increasing for decreasing p. 
There is therefore an unstable bed wave mode independent of the depth of flow, 

which we will classify as a 'ripple' mode dependent on the roughness length zo and the 
value of /3. 
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( b )  Dune mode 
For small values of kD the depth of the flow becomes important and the first maximum 
in T:/h0k& (figure5)isdependent on kD. The growthrate od = [ ( k D ) 2 / ~ 2 , ]  (Ti/h,k -,8), 
now non-dimensionalized with respect to depth, plotted against kD is shown in 
figure 7 for various values of D/zo with ,8 = 2.8. For the curves plotted, with D/zo > lo3 
a maximum occurs a t  a value of kD which varies with D/zo.  This we will classify as the 
dune mode of growth. The curves will rise again, not plotted, to  a second maximum 
at kz, = 0.07 corresponding to  the ripple mode. For D/z,  = lo2 the dune and ripple 
modes have coalesced, giving only a single maximum in the growth rate curve. As ,8 
decreases, for a fixed value of D/zo, the dune mode disappears leaving only the ripple 
mode. Figure 8 shows the results with p = 2.4. The wavenumber a t  which the dune 
maximum occurs, together with the growth rate, is given in table 2, for a number of 
values of ,8 and D/zo.  The value of kD is found to  decrease with an increase in D/zo, i.e. 
for a fixed value of zo the wavelength increases with increasing depth. 

We therefore find two modes of instability of a plane erodible bed, one whose 
wavelength is dependent on the surface roughness of the bed, corresponding to 
the formation of ripples, the other dependent primarily on the depth of flow, corre- 
sponding to  the formation of dunes. Both instabilities Can occur singly or together 
depending on the values of p and D/z,. A comparison of the results of the theory with 
observation is carried out in the next section. 

Engelund & Fredsne’s (1974) results, using a constant eddy viscosity, do not show a 
second unstable region corresponding to ripples. Smith (1  970) obtains asymptotic 
solutions for the growth rate with a constant eddy-viscosity model for large and small 

20 F L M  99 
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5 

FIGURE 6. Growth rate of ripple mode, or, for various values of P. 

P 
0 1.4 2.0 2.4 2.8 

Growth rate x 10-8 - 5.35 0.83 0.17 0.01 

TABLE 1. Growth rate, w, = [ ( ~ ~ k ) ~ / h ~ k u ~ ]  (7i-phok) ,  and wavenumber 
of fastest-growing ripple mode. 

kz0 - 0.155 0-054 0.029 0.011 

waves. I n  terms of the bed shear stress he finds that rz N &Re for kD < 1 and 
r: - $Re/kD for kD 9 1, where Re = U,D/K.  For intermediate valueg of kD Smith 
presents computed results with Re = 500 which show arz/ak < 0 for all kD > 0. Thus 
the ri, kD curve has only one maximum, a t  kD = 0, and for a given value of p the 
constant eddy-viscosity model will predict only one mode of instability. 

The effect of varying the Froude number, Fr, on the results for r$/hokpu2, plotted 
against kD are shown in figure 9 with D/zo = 3 x lo3 and p = 2.8. For kD > 3.5 the 
stress is unaffected by variation in Fr.  Below this value of kD the effect of increasing 
Fr is very marked. A sharp dip in the curve appears for increasing Fr with an increase 
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FIGURE 7. Growth rate of dune mode, wd. for various values of D/zo;  /3 = 2.8. 
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FIGURE 8. Growth rate of dune mode, a,; /I = 2.4. 
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P 
f 

A 
\ 

z0/D 2.0 2.4 2.6 2.8 

Growth rate lod 0.13 0.08 0.07 0-06 
kD 0.41 0-29 0.26 0.23 

Growth rate 1 0 4  - 0.20 0.15 0.12 
kD - 0.59 0.44 0-36 

Growth rate 5 x  10"' - - 0.39 0.25 
ICD - - 1.54 0.63 

- - 0.38 Growth rate - 
- - 1 .oo ICD - 

- No dune mode. 

TABLE 2. Growth rate, wd = [ ( k D ) 2 / h , k u ~ ]  (7,-/3h0k), and wavenumber of 
fastest-growing dune mode. 

0 

-0.2 

-0.4 
FIGURE 9. Imaginary part of perturbed surface stress, T,, for various values of the 

Froude number, Fr;  D/zo = 3 x 108, /3 = 2.8. 

in the maximum at low wavenumbers. At Fr = 1 a transition occurs when the max- 
imum in 7; disappears with 6 c 0 for kl l  < 1-2. 

Figure 10 is a stability diagram from the results showing the regions of stable and 
unstable bed-waves. For Fr c 0-25 the stability criterion is almost constant. Above 
Fr N 1.0 no dunes will exist marking the transition of the bed from a dune to a flat bed 
regime. The ripple region of unstable waves, which for p = 2.8 is 0-006 c kz, < 0.016 
(1 8 c kD c 48) with a maximum growth rate at kz, = 0.01 1, is unaffected by varia- 
tions in Fr. 

The dune region is similar in shape to those produced by Engelund & Fredwe (1974), 
with the present results being extended to low Froude numbers. 

As we should expect the present model does not predict the existence of antidunes. 
The work of Engelund & Fredspre suggests that suspended sediment is required in the 
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0.5 Unstable t 
Stable 

I 

I I I 
I I 

1 1 
1 2 

kD 
FIGURE 10. Stability limits to the formation of dunes; Dlz,  = 3 x lo3, p = 2.8. 

The dashed curve corresponds to  the fastest-gro*ng wavenumber. 

model to account for the formation of antidunes. They also argue that the transition 
region from dune to flat bed regimes is strongly affected by the balance between bed 
load and suspended load, thus requiring accurate predictions of both forms of trans- 
port. The stability boundaries would therefore be affected by the inclusion of suspended 
sediment for the higher-Froude-number flows. 

5. Comparison with observation 
We shall be comparing the results of the linear analysis giving the initial growth of 

the bed wave, with observations of fully developed waves. For low-Fronde-number 
flows Fredsoe & Engelund (1975) find that the wavelength of dunes is nearly constant 
during their growth, although there is a significant increase in the wavelength a t  
higher Froiide numbers. However, as observed by many authors, ripples lengthen 
during their development, their final wavelength being controlled by the separated 
flow over the developed wave. Again we shall consider the two modes ofgrowth 
separately. 

(a )  Ripples 

Yalin (1964), using experimental results from flume studies made by a number of 
authors, estimates that the wavelength of ripples, A,, is given approximately by 

A, = l O O O d ,  (5.1) 

where d i p  the grain diameter of the sediment particles. Allen (1970) obtains the same 
result, However, the scatter in the data is large. Ratios of A,/d as low as 400 and as 
high as 3000 appear even over the narrow range of grain sizes investigated (0.19- 
0.54 mm). 
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The range of wavenumber for the ripple mode given by equation (4.1) cover over 
one order of magnitude for a factor-two variation in the value of p. I n  terms of the 
wavelength this is 

502, < A, < lOOOx,. (5.2) 

For a hydraulically rough flow Nikuradse (1933) found the roughness length to be 
given approximately by 

Z, = d/30. 

I n  a similar series of experiments of water flow over fixed sand grains the value was 
later modified by Kamphuis (1974) to 

Z, = d/15. (5.3) 

(5.4) 

Using this value for the roughness length, expression (5.2) gives 

3d < A, < sod, 

which is clearly an order of magnitude or so too small for observed ripples (but see 
the discussion in 3 6). 

The experiments of Nikuradse and Kamphuis were carried out with an artificially 
smoothed fixed bed of a single grain size. For flows above a mobile bed with the shear 
stress above the critical stress for particle movement the moving sediment will effect 
the value of z,. Extending the work of Owen (1964) for air flow over sand to water flow, 
Smith & McLean (1977) relate the roughness length to the height of the bed-load 
layer. They obtain 

zo = “ O ( ~ O - ~ ~ ) / ( P , - P ) S + ~ ,  for 7 0  > 7cri 

where z, is the roughness length given by Nikuradse’s work. Using data from the 
Columbia River with a medium grain size of 0.33 mm, a value of a, = 26.3 gives a 
good agreement with their observations. With values of u* varying between 1.7 and 
4.6 cm s-l this gives values of z, between 0.01 and 0.32 cm, an order of magnitude 
higher than the Nikuradse roughness length. 

Taking a mean value of z, = 4-5d, expression (5.2) becomes 

(5.5) 203d < A, < 4050d. 

With this order-of-magnitude increase in x ,  due to moving sediment the theory 
therefore predicts a wavelength comparable to that of observed ripples. 

( b )  Dunes 

Results from flume experiments suggest that the wavelength of dunes is given approx- 
imately by 

(see, for example, Allen 1970). However, the range of depths covered is small 
(D 5 0.5m). From field observations Allen (1970) suggests that a better fit of the data 
for deeper flows is given by 

where A, and D are given in metres. 

A, = 2nD (5 .6)  

A, = 1-16D155, (5.7) 
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1000 

f’ I 

Mean depth, D (m) 
FIGURE 1 1. Comparison of observations of the group mean wavelength of dunes from flume, river 
and marine environments (taken from Jackson 1976) with the model’s results: 0, observations; 
0 ,  zo = 0.1 cm; A, zo = 0.25cm; +, zo = 0.5cm; ., zo = 1-0cm. 

Figure 11 (taken from Jackson (1976)) shows observational results of the group 
mean wavelength of dunes plotted against the mean depth of flow for flume, river and 
marine environments (see Jackson’s table 3 for the sources of data) together with 
equations (5.6) and (5.7). For the larger flow depths the data show an increase in the 
ratio A,/D for increasing D. 

Also plotted in figure 11 are the results of the present model with p = 2.8 for values 
of zo from 0-25 cm to  1-0 em. The value of zo is now governed by the effective roughness 
of a rippled bed. For a given D/zo these lie on a straight line parallel to A, = SnD, 
with the ratio A,;D increasing for increasing D/zo as exhibited by the data. It should 
be noted that the results are sensitive to the value of p (table 2) and that the scatter of 
the data presented in figure I 1  can be more than covered by varying p. 

6. Discussion 
The development time of the bed wave, T,, is l/vil where oi is given by equation 

(3.4). Considering the ripple case, taking u* = 5 cm s-I, zo = 0.02 em and a ripple of 
wavelength L = 12 em, then ui - 1.5 x s-l and T, - 600 s. Assuming the devel- 
opment time of the flow to be given by T, - U L / r  (where the depth of the flow affected 
by the bed wave is assumed to be O ( L ) )  gives T, - 10 s. For the dune case again 
taking u* = 5 ern s-1 with a flow depth D = 10 m, then T, - 10 days. The flow devel- 
opment time in a unidirectional flow is given by T, - UD/r ,  i.e. T, - 30 min. In  a 
tidal flow T, - 12 h. In  both the dune and the ripple cases T, 4 T,. Thus our assump- 
tion of neglecting the movement of the bed in calculating the flow is valid. 

Williams &, Kemp (1971) observed the growth of ripples from an initially flat bed 
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comprised of sand 0.14 mm and 0.50 mm in diameter. Using a knife-edge lighting 
arrangement they were able to detect small variations in the bed elevation. The time 
scale of development from a flat bed to ripples a few grain diameters in height was 
approximately 100 s, comparing well with our result of 600 s. 

We can also calculate the forward translational velocity of the bed wave, given by 
a J k .  For the parameters given above this gives for the ripple a value of - 3 x 
cm s-l and for the dune N 1 m/day in a unidirectional flow. 

The scour and deposition process for ripple formation proposed by Williams & Kemp 
(1971) assumes the bed to be initially disturbed by a ‘burst’ of high shear stress. 
However, ‘bursts ’ are three-dimensional and, in the sea, have dimensions much 
greater than the wavelength of the ripples. The mechanism of Williams & Kemp does 
not account therefore for the two-dimensionality, at least initially, of ripple fields. In  
the author’s view it seems unlikely that such a mechanism can have such a drastic 
effect on the fiow and bed unless there is some basic instability of the bed giving a 
definite wavelength for ripple growth. From the results of the analysis it is postulated 
therefore that, although the bursting phenomenon may be a possible triggering mech- 
anism, ripples are formed by an unstable mode of the bed responding to some dis- 
turbance of the bed, rather than propagating downstream by a scour and deposition 
process. 

Once the ripple has attained some finite size the effective roughness of the bed will 
be increased, being dependent on the dimensions of the developed ripple. Observed 
values of zo over rippled beds are typically an order of magnitude higher than those 
observed for plane beds. We can expect the results of the model to still hold and, using 
equation (4.1), the model can be extended to predict the formation of a second ripple 
dependent on the ‘roughness’ of the first. In this way a hierarchy of ripples can be 
built up, each increasing in wavelength until some limiting factor such as the depth of 
flow becomes important. 

It is now possible to argue that we can use the value of the surface roughness due to 
Nikuradse to predict the growth of ripples of an observed wavelength, since using 
equation (5.3) for zo predicts the growth of ‘micro-ripples’ which, by increasing zo, 
trigger the growth of larger ripples. This is similar in concept to the ‘primary ripples’ 
of Bagnold ( 1  956), although the mechanism of the instability is different. However, 
whether this is the case or that the moving sediment itself increases zo would need some 
very carefully controlled experiments to clarify. 

Using the above extension to the model we can also account for the exist>ence 
of larger-wavelength mega-ripples observed in deeper flows. Taking a value of 
zo = 0-5 cm for a rippled bed of wavelength 20 cm, then the mid-range of equation 
(5.2) predicts a mega-ripple of wavelength 3 m comparable to observed waves (see, 
for example, Langhorne 1973). It should be noted that the mechanism of Williams 
& Kemp (1971) would not predict the formation of larger ripples nor the ‘spectral 
gap ’ between the two distinct wavelengths. 

The results of the analysis are strongly dependent on the value of p. In particular 
the model predicts that ripples will not form for > 2.9. Using the theory of Bagnold 
(1956) for the sediment transport we find that ,8 increases for increasing shear stress 
and grain size (equations (3.6) and (3.7)).  An interesting feature of ripples is that their 
existence appears to be restricted to sediment finer than a definite mean size, in 
qualitative accordance with the theory. From flume experiments Moss (1972) gives 
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a value for the grain size limit of 0-92 mm. Bagnold (1956) presents experimentally 
determined values of tan $ for a number of different grain sizes with low shear rates. 
Assuming that /3 = l i t a n #  [equation (3.6)] and using table 2 from Bagnold (1956) 
for tan $, this value of grain-size limit would give a critical value of p _N 2.0 for ripple 
formation, although there is a great deal of uncertainty in this value. 

For an increasing flow, ripples are observed to  be ‘washed out ’ above some critical 
shear dress, again in qualitative agreement with the theory, although no direct quan- 
titative comparison can be made a t  present. It should however be noted that for 
increasing shear stresses the suspended load will become more important. Engelund 
& Fredsoe (1974) show that the suspended load has a stabilizing effect on the bed 
wave and therefore the stability of the bed will also be dependent on the balance 
between the bed and suspended load. 

7. Conclusions 
The results of the linear stability analysis with particular regard given to the 

turbulent flow close to  the surface show an erodible bed to be unstable a t  two modes 
dependent on the roughness of the bed and the depth of the flow respectively. The 
results depend on the two parameters z,,, the roughness length of the bed, and /3, the 
effect of the local bed slope on the bed-load transport. With a careful choice of z,, and 
/3 the comparison of the results of the analysis with observation is good for both ripples 
and dunes, and strongly suggests that  ripples are formed by an instability mechanism. 
Clearly, however, before any firm conclusions can be drawn from the analysis, a 
better understanding is needed of the parameterization of the roughness of the bed 
when the sediment is moving and the effects of the local bed slope on the bed load. 

This work forms part of the author’s Ph.D. thesis submitted to  the University of 
Southampton. The author would like to  express his thanks to  his research supervisor 
Dr P. A. Taylor for much encouragement and advice and the Natural Environment 
Research Council for financial support. 
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